Supplemental Material for:

- 2 Complex-valued universal linear
- transformations and image encryption using
- spatially incoherent diffractive networks

J Allili falig ' lilikexiyalig@ucia.euu	5	Xilin Yang ^{1,2,3†}	mikexlyang@ucla.edu
---	---	------------------------------	---------------------

6 Md Sadman Sakib Rahman^{1,2,3†} mssr@ucla.edu

7 Bijie Bai^{1,2,3} baibijie@ucla.edu

8 Jingxi Li^{1,2,3} jxlli@ucla.edu

9 Aydogan Ozcan^{1,2,3,*} ozcan@ucla.edu

- 10 ¹Electrical and Computer Engineering Department, University of California, Los Angeles, CA, 90095, USA
- 11 ²Bioengineering Department, University of California, Los Angeles, CA, 90095, USA
- 12 ³California NanoSystems Institute (CNSI), University of California, Los Angeles, CA, 90095, USA
- 13 *Corresponding author: ozcan@ucla.edu
- 14 [†]Equal contribution
- 15 **Contents**:
- 16 FIG. S1. The same as Figure 3 of the main text, except that the information 'L' and 'A' are encoded into
- the real and imaginary parts of the complex image, respectively.
- 18 FIG. S2. Complex-valued image decryption performance of spatially incoherent D²NNs as a function of
- 19 the number of trainable diffractive features/neurons available.
- 20 FIG. S3. Evaluation of the spatially incoherent D²NN-based complex-valued image encryption method
- 21 using entropy.

- 23 FIG. S4. Operation of a spatially incoherent D²NN for an arbitrarily selected mosaicing and demosaicing
- 24 scheme.

25 FIG. S5. Comparison between E=4 and E=3 mosaicing schemes for a spatially incoherent D²NN.

FIG. S1. The same as Figure 3 of the main text, except that the information 'L' and 'A' are encoded into the real and imaginary parts of the complex image, respectively.

FIG. S2. Complex-valued image decryption performance of spatially incoherent D²NNs as a function of the number of trainable diffractive features/neurons available.

FIG. S3. Evaluation of the spatially incoherent D²NN-based complex-valued image encryption method using entropy. Refer to the "Entropy Evaluation" section of the main text for details.

FIG. S4. Operation of a spatially incoherent D²NN for an arbitrarily selected mosaicing and demosaicing scheme.

44 FIG. S5. Comparison between E=4 and E=3 mosaicing schemes for a spatially incoherent D²NN.